
An Analysis of Feature-metric Loss on Self-supervised Monocular Depth
Estimation

Richard Lin
Stanford University

yifengl@stanford.edu

Michael Lin
Stanford University
mlin4@stanford.edu

Abstract

Phomometric loss is widely used for monocular depth
estimation, but the loss is hard to optimize due to plateau
landscapes for pixels in textureless regions and multiple lo-
cal minimas for less discriminative pixels. FeatureNet, the
new state-of-the-art model, introduced feature-metric loss
to address this issue. In this work, we apply feature-metric
loss to the previous state-of-the-art model, Monodepth2,
and explore the efficacy of feature-metric loss. We evaluate
our results on the KITTI dataset and the indoor NYU depth
dataset. We find the addition of feature-metric loss gener-
ally improves the model’s performance but not consistently,
and we also see that model performance doesn’t always
correlate with the quality of the feature representations.

Our implementations can be found in the following
repositories:
https://github.com/richardlyf/nyuv2-python-toolbox
https://github.com/richardlyf/monodepth2
https://github.com/richardlyf/FeatDepth

1. Introduction

Recently, there has been significant research carried out
in regards to self-supervised monocular depth estimation.
One such paper, ”Feature-metric Loss for Self-supervised
Learning of Depth and Egomotion” [4], recently achieved
state-of-the-art, utilizing feature-metric loss on learned
feature representation in addition to photometric loss to
create more accurate depth and pose estimations.

The addition of feature-metric loss addresses the
problem where photometric loss is unable to optimize
over textureless regions and non-discriminative pixels.
And since the feature representations are pretrained in a
self-supervised manner, feature-metric loss can easily be
included in other monocular depth estimation models and
improve their performances at very little cost.

In this work, we explore the efficacy of feature-metric
loss, and we do so by employing feature-metric loss in the
Monodepth2 [2] model, which uses photometric loss. We
evaluate our results on the KITTI dataset as in the original
papers, and we also evaluate the model’s performance on
the NYU depth dataset, where textureless regions are prev-
elant in indoor scenes.

2. Related Work

In this section, we discuss the implementation and con-
tribution of both Monodepth2 and FeatureNet.

2.1. Monodepth2

Monodepth2 [2] was previously considered the state-
of-the-art model for outdoor monocular depth estimation.
The model is trained using self-supervision, where a source
image is used to directly predict depth or disparity, and this
depth information is used to project the image from the
source frame into the target frame. The reprojected image
is then compared to the ground truth target image, and
the objective is to minimize the photometric reprojection
error[5].

The model supports training using consecutive monoc-
ular video frames (M), calibrated stereo image pairs (S),
or both (MS). In the case of training with only monocular
data, the source image is the video frame at time t, and
the target image is the next frame at t + 1. The model
uses a pose estimation network to estimate the transforms
between the two frames, and the estimated pose is used to
reproject the source image. For stereo training, the source
and target frames are the left right images, and the cameras
are calibrated so the source image can be reprojected
directly using the intrinsic and extrinsic parameters.

To address issues with out-of-view pixels and occlu-
sions, [2] takes the minimum of the reprojection loss,
instead of using the average over all pixels. The model
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also auto-masks out the stationary pixels to account for the
common assumption in monocular depth estimation that
the camera is moving and the scene is static. Multi-scale
estimation is also introduced to mitigate the issue where
’holes’ appear in the depth estimates where the region has
low texture. The architecture of the model is show in 1.

2.2. FeatureNet

FeatureNet[4], recently accepted by ECCV 2020,
achieved new state-of-the-art results on the KITTI dataset
for outdoor monocular depth estimation. Similar to [2],
FeatureNet also accepts training using monocular videos,
stereo image pairs, or both. The main contribution of this
paper is the introduction of feature-metric loss, which ad-
dresses the issue of photometric loss failing on low-texture
regions. Though photometric loss is effective in most cases,
it is problematic because low-texture regions with similar
photometric values may result in small photometric losses
even when the depths and poses are wrongly estimated.

Feature-metric loss deals with this problem by com-
puting loss from the reprojection of learned feature
representations. The feature representations capture image
features and focus on low image gradient regions, and the
loss itself is computed in a similar way to photometric
loss, where the images features from the source images are
reprojected and directly compared to the features extracted
from the target image.

The feature representations are learned in a self-
supervised manner with singleview reconstruction through
a resnet-based auto-encoder. In addition to the image
reconstruction loss, discriminative loss and convergent loss
are added to force the model to focus on useful features.
The discriminative loss is defined to ensure the learned
feature representations have large gradients and put extra
emphasis on low-texture regions. The convergent loss
is defined to encourage smoothness of feature gradients,
which ensures consistent gradients during optimization.

After training the auto-encoder, the encoder weights are
frozen and then used to train the depth estimation model.
The feature encoder doesn’t update its weights during the
depth estimation training.

3. Approach
In this work, we first setup our baselines by replicating

the results in the papers using their publicly released code,
training on the KITTI dataset. We specifically look at the
models trained using monocular videos and stereo image
pairs. After doing so, we adapt and retrain these models on
the indoor NYU dataset to see how these models perform

in an indoor setting. We only evaluate the models on
monocular video training data for the NYU dataset because
stereo image pairs are not provided. Also, since it’s harder
to estimate camera poses with many textureless regions in
indoor datasets, we expect Monodepth2 to perform worse
on the NYU dataset.

We then add feature-metric loss to the Monodepth2
model and repeat the experiments on both KITTI and NYU
datasets. For experiments performed on the KITTI dataset,
the models use the pretrained weights for the feature
encoder provided by [4]. For the NYU experiments, we
trained our own feature encoder using the NYU dataset.
We expect all results, where feature-metric loss is included,
to outperform their baseline counterparts.

3.1. Dataset

We look at two different datasets in this project: the
Outdoor KITTI dataset [1] and the NYU Depth Dataset V2
[3], both mentioned above.

KITTI is a dataset that includes almost 8000 training
images that come from autonomous driving vehicles and
several videos over a span of a few days. These are
represented as color mono and stereo sequences stored in
the .png file format.

The NYU Depth Dataset V2 is also a set of video
sequences, but from an indoor dataset rather than from
autonomous driving vehicles. Its labeled dataset contains
1500 densely labeled pairs of aligned RGB and depth
images, while the raw dataset contains approximately 400k
unlabeled frames.

For KITTI, we are using the eigen split described in the
Monodepth2 paper. For NYU, we are using a randomly
sampled subset of the raw video frames. We train on about
40k frames and evaluate the model on the labeled dataset
with ground-truth depth information.

Since the NYU dataset is processed in MATLAB, we
wrote our own data processing code in Python3, and here’s
the link to the repo:
https://github.com/richardlyf/nyuv2-python-toolbox

3.2. Evaluation

Qualitatively, we compare the depth maps generated by
all three models to see which one performs better. Specif-
ically, we look at examples with textureless regions and
compare if the feature metric improves the depth estimation.



Figure 1. Monodepth2 model, as described in [2]

Quantitatively, we use the standard metrics for depth es-
timation as defined in the two papers:
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d and d∗ respectively denotes predicted and ground truth
depth, D presents a set of all the predicted depth values of
an image.

3.3. Implementation details

The models are trained on Google Cloud VM with 1
NVIDIA Tesla P100 GPU. We used PyTorch 0.4, consistent
with the original Monodepth2 framework. We have tried to
switch the model to PyTorch 1.1+ but that resulted in the
model diverging rapidly. Due to limitations in time and
compute resources (GCP constantly reporting not having
enough GPUs), we were only able to train our models up to
5 epochs, which took roughly a day. The full model requires
20 epochs of training. When the pretrained feature encoder
is not used, we train our own feature encoder for 5 epochs,
which took half a day. We used ResNet50 as the backbone
for the feature encoder, and ResNet18 as the backbone for
the encoder of the depth estimation model. The input im-
ages are scaled down to 640×192 for the KITTI dataset, and
480×192 for the NYU dataset.

4. Experiments

As we discussed in the previous sections, we are able
to build and train models in several different ways. But
to put it more concretely, there are three main variables
that we want to take a deeper dive in: 1) photometric vs.
photometric and feature-metric loss, 2) KITTI (outdoor)
vs. NYU Depth (indoor) datasets, and 3) mono vs. stereo
inputs.

First, for photometric vs. photometric and feature-metric
loss, we replicate the Monodepth2 paper using the KITTI
dataset and use that as our baseline. This is the first row in
Table 1, below. Then, we add feature-metric loss to it (even
rows in Table 1). In this experiment, we directly compare
how effective the feature-metric loss is.

Secondly, for KITTI vs. NYU Depth Dataset, we want
to see how the models perform on an indoor dataset. We
repeat all experiments on both datasets because we want to
know if the models can be generalized to other domains,
and if feature-metric loss can still be effective.

Finally, for Mono vs. Stereo, we want to see if feature-
metric loss is affected by the mode of training. Just like
our investigation for KITTI vs. NYU, this looks at how
different inputs can affect model performance. This is
especially relevant, since FeatureNet does not report their
results on pure stereo training.

4.1. Quantitative Results

Our results are displayed in Table 1. Every single model
is only trained on 5 epochs, due to time and resource
constraints. This is important to note, as these results are
very much a rough estimates and don’t represent how the
models would actually perform if they are run through to
completion.

Through a basic scan of the table, we can see that
for KITTI, there was a split in whether photometric with



Quantitative Results

Method dataset train
Lower the better

abs rel sq rel rmse rmse log
Higher the better

a1 a2 a3
Photometric KITTI M 0.125 0.938 4.849 0.197 0.859 0.956 0.980
Photometric & feature-metric∗ KITTI M 0.126 0.947 4.867 0.200 0.858 0.955 0.980
Photometric KITTI S 0.115 0.902 4.982 0.206 0.856 0.949 0.977
Photometric & feature-metric∗ KITTI S 0.113 0.838 4.880 0.205 0.858 0.949 0.977
Photometric NYU M 0.345 0.512 1.139 0.528 0.469 0.740 0.859
Photometric & feature-metric† NYU M 0.321 0.435 1.038 0.463 0.502 0.768 0.886

Table 1. Comparison of performances are reported on models trained on 5 epochs from scratch. Values in bold are better. M: trained on
monocular videos. S: trained on stereo pairs. ∗: Using the pretrained autoencoder weights provded by [4]. †: Using the autoencoder trained
for 5 epochs from scratch.

Figure 2. KITTI Dataset Example 1

feature-metric performed better than purely photometric.

For KITTI with monocular input, the regular baseline
Monodepth2 actually outperformed our version of Mon-
odepth2 with feature-metric loss. On the other hand, for
stereo, our feature-metric loss model performed better than
the baseline Monodepth2. Considering the mono baseline
only did better than the feature-metric version by a slight
margin, we think the feature-metric version might still be
able to do better if it’s trained to completion.

With regards to our NYU Dataset results, it was nice
to see that our predictions for performance were correct.
Across the board, the model with feature-metric loss out-
performed the baseline, showing that the feature represen-

tations do help with low texture indoor scenes.

4.2. Qualitative Results

We have several figures (Figures 2-5) that illustrate how
well our models did. Figures 2-3 show how well the KITTI
models performed and Figures 4-5 (below) demonstrate
how well the NYU Dataset performed.

If we first take a look at the KITTI dataset results (Fig-
ures 2 and 3), we can see that, overall, they all performed
pretty similarly, and they seemed pretty accurate compared
to the ground truth.

However, if we were to examine the generated depth
maps a little more closely, we can see that, overall, mono



Figure 3. KITTI Dataset Example 2

performed better than stereo, for both photometric and
photometric with feature-metric. We are not entirely
surprised by the result, since in the Monodethp2 paper, the
qualitative results for the stereo model are slightly worse
than the mono model’s, so perhaps it make senses why the
performance would reflect that.

Additionally, you can see that photometric and feature-
metric performs better than just photometric (looking at
just mono), especially if you take a look at the details. In
Figure 2, the car behind the closest car on the left is much
more defined in the photometric + feature-metric model,
and in Figure 3, you can see that the tree on the left is more
crisp in the lowest left corner compared to its photometric
counterpart.

As stated before, all of our models were trained with
only 5 epochs, but we wanted to see how well our model
performs with longer training time, hence the 10-epoch
image on the bottom right for both KITTI datasets. Sur-
prisingly, more epochs made the training worse, which is
something to investigate in the future.

If we take a look at Figures 4-5, which represent the
qualitative results for the NYU dataset, we can see that, on
average, all models performed much more poorly than that
of the KITTI dataset. There are rarely any defined lines,
and it’s hard to make out the scene at all.

One of the reasons for this, perhaps, is because there are
many textureless regions in these scenes compared to the
KITTI outdoor dataset, where objects and structures are
easier to distinguish. Although the feature representations
are trained to focus on low image gradient regions, low
texture patches can still make the pose estimation network
incredibly hard to train, and correct pose estimation is
crucial when monocular video is the training input.

While figures 4 and 5 are less than ideal, we can still see
that the photometric + feature-metric pictures appear better
than the photometric model. there is slightly more detail
in the pictures, especially with the metal shelves in Figure 4.

Overall, while the quantitative results don’t unanimously
justify the effectiveness of feature-metric loss, the quantita-
tive results show that, in every situation, the feature-metric
model is an improvement on the photometric model.

4.3. Ablation Study

Regarding ablation study, we try to take our experi-
mentation one step further to see which factors made a
difference. One of the main factors that we mentioned
earlier was the number of epochs we used to train. Here we
first look at the direct effect of training time on the depth
estimation model itself, and then we look at the effect of
training time on the feature encoder.



Figure 4. NYU Dataset Example 1

Figure 5. NYU Dataset Example 2

In Table 2, we show the stereo model trained with
feature-metric loss on the KITTI dataset for 5 and 10 epochs
respectively, and we see that the 5-epoch model actually
performed better than the 10-epoch model. This is consis-
tent with Figure 2 and 3, as mentioned in the qualitative
results section. We’re not really sure why this is the case,
but it would be interesting to see if this trend continues to
15 or even to 20 epochs. It is possible that this is only a
slight dip during training.

Stereo + feature-metric on KITTI
Method abs rel sq rel rmse rmse log
5 epochs 0.113 0.838 4.880 0.205
10 epochs 0.114 0.954 4.969 0.207
Method a1 a2 a3
5 epochs 0.858 0.949 0.977
10 epochs 0.858 0.949 0.976

Table 2. Comparing the same model trained for 5 and 10 epochs
using the pretrained feature-metric encoder.

In Table 3, we show two mono models trained with
feature-metric loss on the NYU dataset for 5 epochs. One
model has a feature encoder that was trained for 5 epochs,
and another with a feature encoder that was trained for 20
epochs.

Surprisingly, the 20-epoch version also performed
more poorly than the 5-epoch version, which, if studied
more, could point to a discreditation of the feature-metric
approach. Of course, without further investigation, we
cannot draw any conclusions based on our current results.

feature-metric on NYU
Method abs rel sq rel rmse rmse log
5 epochs 0.321 0.435 1.038 0.463
20 epochs 0.339 0.488 1.116 0.533
Method a1 a2 a3
5 epochs 0.502 0.768 0.886
20 epochs 0.468 0.749 0.870

Table 3. Comparing the same model trained for 5 epochs, using
feature-metric encoder that was trained for 5 and 20 epochs.

4.4. Conclusion

Overall, this research has shown that adding feature-
metric loss to photometric less does, indeed, increase
the performance of self-supervised monocular depth
estimation. It works best on the NYU dataset where
textureless regions are much more prevalent; however, it
isn’t consistent, as we can see in our ablation studies.

A big portion of this uncertainty is due to the short
amount of training time we had available, and in the fu-
ture, the next steps are to figure out why a feature encoder
trained for more epochs performs worse, and what part of
the feature-metric loss is actually impacting the model in a
positive way.
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